The Volocopter flies!
And is Ready to Take the Next Step to Urban Mobility

- by e-volo GmbH -

Florian Reuter | NASA ODM Workshop, Hartford, CT, USA | 29 September 2016
Content

» Introduction to the Volocopter and its potential

» Exemplary Use Case

» Acoustic Measurements
The world urgently needs innovation in urban mobility
Urban mobility needs are growing worldwide
The Volocopter offers revolutionary simplicity in piloting, unprecedented safety, low noise, and the absence of emission:

Cost effective
- Superior operating costs

Simple
- Automatic flight stabilization
- Operation of VTOL¹ via single joystick
- Significantly reduced piloting skills required

Safe
- Multiple redundancy in all critical components and networks
- Significant reduction of human errors
- Full aircraft emergency parachute

Green
- Purely electric
- Significantly reduced acoustic signature

¹ Vertical take-off and landing vehicle
The Volocopter already masters revolutionary fully automated maneuvers

Automatic Attitude Control
- $h_1 = h_2$

Automatic Altitude Control
- $h = \text{const.}$

Automatic Position Hold
- $z = \text{const.}$
- $x = \text{const.}$

Automatic Landing
- $x = \text{const.}$

» Crosswinds and turbulence automatically compensated

» Gentle touchdown upon pilot command
The propulsion system of the Volocopter is mechanically far simpler than in a conventional helicopter

Volocopter vs. Helicopter

» Direct drive
» Brushless motors

Simple mechanics:
Less failures, less maintenance, lower operational costs

» Swashplate
» Pitch control
» Gear-box
» Rudders
» Push rods
» Tail rotor
The Volocopter platform can be extended into a range of innovative aerial vehicles, both manned and unmanned.

All vehicles can be equipped with a purely electric or hybrid propulsion system.
The Volocopter enables revolutionary use cases in urban mobility
e-volo will lead to create these markets with a deliberate 3-step approach towards fully autonomous aircraft

1. **Existing Aircraft (private and govt.)**
 - Expand existing markets for gyrocopters and helicopters
 - Existing regulation
 - Served by Volocopter starting in 2018

2. **Urban Aircraft (incl. commercial)**
 - Lead emerging markets for personal flight in urban areas
 - Modifications to regulation
 - Served by Volocopter starting in 2020

3. **Personal Aircraft/Autonomous Aircraft**
 - Lead emerging markets for autonomous flight
 - New regulation required
 - Served by Volocopter starting in 2022(?)

1 Personal Air Transportation System; cp. to EU project MyCopter by Max Planck, ETH, KIT, DLR et al.
Content

» Introduction to the Volocopter and its potential

» Exemplary Use Case London

» Acoustic Measurements
In order to successfully implement an aerial shuttle service in an urban setting, several prerequisites need to be met.

Prerequisites for operating in urban centers:

- Safety ✔
- Noise/Emissions ✔
- Cost/Benefit ✔
- Feasibility ✔
An exemplary case study for London illustrates the value of a Volocopter shuttle service

Shuttle from Heathrow to London City Airport, Distance to cover: ~ 20 miles

Source: Google Maps
A Volocopter service can offer the service at 1/3 of the time required by ground transport

Comparison of transportation modes

Passenger car
- Distance: 62 miles
- Trip time: 1:14 hrs

Public transport
- Trip time: 1:13 hrs
- every 15 min

Volocopter service
- Distance: 20 miles
- Trip time: 25 min

Time saving: ~ 50 min i.e. 2/3!
Content

» Introduction to the Volocopter and its potential

» Exemplary Use Case London

» Acoustic Measurements
A brief acoustic test flight program indicated significant noise advantages of the Volocopter over a conventional helicopter.

- **Capacity:** 2 passengers
- **MTOM:** 450 kg
- **Diameter of rotor circle:** 7.60 m
- **18 fixed pitch blades**
- **18 battery-powered electric motors**

Volocopter

- **Capacity:** 2 passengers
- **MTOM:** 650 kg
- **Rotor diameter:** 7.70 m
- **1 main rotor and 1 tail rotor (pitch variable)**
- **Single piston-engine**

Acoustic test

Vertical climb from ground level to 75 meters above ground level
The VC200 proved to be half as loud on takeoff and about one-third as loud at altitude versus the R22

A-weighted sound pressure measurements:

- \(\text{L}(\text{AS}_{\text{max}}) = 80 \text{ dB during climb} \)
- \(\text{L}(\text{AS}_{\text{max}}) = 65 \text{ dB at 75 m distance} \)

- Series of tones clustered around a tight frequency band
- Near complete absence of blade-vortex interaction noise (BVI.)

A-weighted sound pressure measurements:

- \(\text{L}(\text{AS}_{\text{max}}) = 90 \text{ dB during climb} \)
- \(\text{L}(\text{AS}_{\text{max}}) = 82 \text{ dB at 75 m distance} \)

- 3 sound sources with distinct frequencies
 - Main rotor at 17 Hz
 - Tail rotor at 113 Hz
 - Engine at 180 Hz

Source: Confidential Report by Josephson Engineering
The Volocopter represents a breakthrough in the design of novel, quieter VTOL aircraft

Preliminary conclusion

18 Volocopter rotors are only 2 x as loud as a single one

A VC200 takeoff at 75 m is about as loud as an R22 at 225 m

Overflight of a VC200 at 75 m is roughly as loud as an R22 at 500 m

Using PNL measurements the differences between the VC200 and a helicopter with a turbine engine would be even greater!
We aim to conduct first pilot cases in 2018