Transforming Energy through American Innovation

Scott Cary, PE, LEED AP
Scott.cary@nrel.gov
Vertical Flight Society Webinar
April 15, 2020
An Energy Revolution is Sweeping the Nation

Source: Siemens AG, North Sea, Suffolk Coast, UK
U.S. Energy Supply is Shifting

Renewable energy—not including hydropower—currently produces 10% of the total U.S. electricity generation. Within the next two years, this is expected to grow to 13%.

Costs for Renewables are Falling

Advanced energy technologies are providing real-world solutions by:

• Becoming increasingly cost-competitive
• Boosting the U.S. energy industry
• Providing jobs for American workers

Source: Lazard's 2017 Levelized Cost of Energy Analysis, Version 11, 2 November 2017
Changing Electric Paradigm

ELECTRIFICATION
Critical to long-term carbon goals and will be a relevant decentralized energy resource

Key technologies:
- Electric vehicles
- Vehicle to grid/home
- Smart charging, heat pumps

DIGITALIZATION
Allows for open, real-time, automated communication and operation of the system

DECENTRALIZATION
Makes customers active elements of the system, though requires significant coordination

Key technologies:
- Energy efficiencies
- Decentralized storage
- Microgrids, demand response

Key technologies:
- Network technologies (smart metering, remote control and automation systems, smart sensors, optimization and aggregation platforms)
- Customer technologies (smart appliances and devices, Internet-of-Things)
General Challenges Airports Face

- **Electrification** – Vehicles, GSE, Uber Elevate, Planes
- **Automation** - Greater equipment sensitivity to continuous, high quality energy supply; Cyber vulnerabilities
- **Economic** – Changing cost and revenue structures
- **Environmental** – Many airports in non-attainment areas, with noise concerns and close in development
- **Resiliency** – Number and duration of power outages climbing

Aviation Industry Challenges

<table>
<thead>
<tr>
<th>Airport</th>
<th>Power Outage Date</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta Hartsfield (ATL)</td>
<td>December 18, 2017</td>
<td>11 Hours</td>
</tr>
<tr>
<td>Las Vegas (LAS)</td>
<td>June 13, 2018</td>
<td>90 Minutes</td>
</tr>
<tr>
<td>Austin (AUS)</td>
<td>June 24, 2018</td>
<td>45 Minutes</td>
</tr>
<tr>
<td>Washington - Reagan (DCA)</td>
<td>August 16, 2018</td>
<td>60 Minutes</td>
</tr>
<tr>
<td>Hartford, CT (BDL)</td>
<td>November 5, 2018</td>
<td>60 Minutes</td>
</tr>
<tr>
<td>Philadelphia (PHL)</td>
<td>November 6, 2018</td>
<td>40 Minutes</td>
</tr>
<tr>
<td>New York (LGA)</td>
<td>December 28, 2018</td>
<td>4 Hours</td>
</tr>
<tr>
<td>Madison, WI (MSN)</td>
<td>January 21, 2019</td>
<td>3 Hours</td>
</tr>
<tr>
<td>Albuquerque (ABQ)</td>
<td>March 23, 2019</td>
<td>5 Hours</td>
</tr>
<tr>
<td>Los Angeles (LAX)</td>
<td>June 6, 2019</td>
<td>3 Hours</td>
</tr>
<tr>
<td>Honolulu (HON)</td>
<td>June 12, 2019</td>
<td>1 Hour</td>
</tr>
<tr>
<td>Oakland (OAK)</td>
<td>June 13, 2019</td>
<td>30 Minutes</td>
</tr>
<tr>
<td>Dallas-Fort Worth (DFW)</td>
<td>June 24, 2019</td>
<td>3 Hours</td>
</tr>
<tr>
<td>Chicago O’Hare (ORD)</td>
<td>June 29, 2019</td>
<td>45 Minutes</td>
</tr>
<tr>
<td>Los Angeles (LAX)</td>
<td>March 3, 2020</td>
<td>20 Minutes</td>
</tr>
</tbody>
</table>
Moving people

NASA Photo / Tom Tschida
Examples of MW+ Charging Challenges and Barriers:
On-Board Storage - How to Maximize Charge, Minimize Heat and Maximize Life

- Charging power into the battery is either limited by the port capacity or the battery’s charge acceptance curve (restricts power)
- At 1.5C rate of charging, this 900 kWh battery is limited by the port’s capacity (1.2 MW) and hence charges at constant power of 1.2 MW
- This 660 kWh battery follows the batteries charge acceptance curve to achieve same C-Rate

C-Rate Limits of Cells

- If battery limited cells/batteries, advanced algorithms can speed up charging time
- For fast charging, pulse-based algorithm charges a cell 18% faster compared to CC-CV, and can increase overall station throughput
- Advanced control would be required to minimize the impact of such pulses on the grid/charger system (power quality)

Advanced Charging could impact power quality

- Pulse-based charging can also increase heat generation inside the cell/battery pack
- Novel ways of heat dissipation and waste heat recovery would be required at MW-scale charging
- Heat generation will differ by battery chemistry and rate and will need to be considered for proper thermal control

Heat Generation Concerns
Moving goods

Adv. Combustion & Electrification
Hybridization & Electrification
Biofuels
Hydrogen
Energy storage
Enabling Electrified Vehicles in the U.S: Some of the Challenges and Opportunities in High Power, MW+ Charging Scenarios

- Understanding Use Cases for Optimal Control
- Charge Control of Vehicle Batteries within a MW+ Charging Station
- Power Handling Challenges of Connectors and Cabling
- Opportunities for DER and BTMS
- Site Optimization via Control Approaches
- Grid Impacts
- MV Power Hardware
- Conversion Equipment
- Codes and Standardization
Powering mobility

- Renewables
- Grid Integration / Managed Charging
- Buildings Integration
- Cybersecurity
- Extreme fast charging
• **Challenges:**
 - Current wave: Light duty vehicles/eGSE ongoing
 - 1st Wave: Buses
 - 2nd Wave: Class 8 and heavy-duty trucks
 - 3rd Wave: Aviation
 - Urban Air Mobility
 - Pilot Training/Regional Service (8-12 passenger)
 - Hybrid regional aircraft

• **Opportunities:**
 - Vehicle to Grid (V2G) Storage resources
 - Siting Energy Generation/Storage near load
 - Designing transportation system improvements

• **Recent Extreme Fast-Charging Workshop:**
• A total cost of ownership (TCO) study for Medium Duty Delivery trucks:
 • $0.10/kW-h, payback period for an EV is 3½ years
 • $0.20/kW-h, payback period is 5 years

Because of time-of-use and demand charges, the average cost of electricity can more than double for fast charging compared to slow overnight charging.

3 Cummins Electric Truck with Range Extending Engine (ETREE)
DOE Cooperative Agreement No. DE-EE0007514
Behind-The-Meter Storage (BTMS) Research Guided by System Level Thinking.

• Focus on specific end user outcomes
• Minimize cost of energy to user
• EVs will be charged at/near buildings.
• Demand charges need to be eliminated.
• Grid impacts minimized.
• Integration of PV is/will be common.

• Both electrons and heat need to be stored.
• New batteries are needed
• New thermal storage is needed

A partnership with the DOE Buildings, Solar, and Vehicles Offices
Techno-economic modeling can identify the trade-off between capital costs and optimal cost savings under complex utility tariff.

Example:
- Results show 12.4MW PV + 2.4 MW:3.7 MWh storage can provide $19.3 million NPV.
- Battery is only economical when paired with PV at this site due to wide peaks.
Biofuels (SAF)/Hydrogen

- **Challenges:**
 - Electrification of long-haul aviation not near term
 - Hybrid electric systems require fuel source

- **Opportunities:**
 - Utilization of SAF to improve resiliency position for longer term outages
 - Onsite Generation
 - Logistics of material movement
 - Hydrogen generation could be utilized to store cyclical energy generation (wind/solar)
Sources of Energy System Disruption

Natural Disasters
Space Weather
Physical Threats
Electromagnetic Pulse
Cyber Threats

Natural Threats
Human Threats
We live in an increasingly connected world.

- Half the world’s population uses the Internet.
- By 2030, 125 billion IoT devices are expected to be in use.
- Over the past 10 years, malware attacks have totaled 780 million.

*Source: Assessing the DNS Cyber Attack Security Risk
2018 Ponemon Report on DNS Security and Cyber Attack Risks*
Energy Security & Resilience

ENERGY SECURITY
- A strategic objective to maintain energy services
- Protecting systems against disruption from natural, human or technological causes

ENERGY RESILIENCE
- An energy system property
- The ability to adapt to changing conditions and recover from disruptions
- Contributes to energy security
Cost-competitive renewables are making up a larger share of the energy mix. The grid edge is transforming into a dynamic space where networked, distributed energy generated, stored, managed, and traded.
Strategic research to mitigate fast-charge infrastructure consequences

- NREL is conducting a full threat assessment of extreme fast charging and wireless power transfer charging infrastructure, assessing plug-in electric vehicles, charging infrastructure, electric grid R&D, and national cybersecurity expertise.

- **Lab Partners**: Idaho National Laboratory and Oak Ridge National Laboratory

- **Industry Partners**: Electrify America, ABB, Tritium
Transformative technologies

- Automation
- Connectivity
- Wireless charging
- Big data/analytics
- Deep learning
Athena Project Overview

Caleb Phillips and Monte Lunacek
Data Science, Analysis and Visualization
Computational Sciences Center
National Renewable Energy Laboratory

Kenneth (Ken) Kelly
Team Leader – Commercial Vehicle Technologies
Transportation and Hydrogen Systems Center
National Renewable Energy Laboratory
Athena Stakeholders

Technical Advisors (Ports) and Industry Advisors ensure generalizability and broad success.
Athena Focus Areas

OPERATIONS
- Shuttle optimization & EV analysis
- Curbside congestion & policies
- Freight modeling & analysis

PLANNING
- Mode choice modeling
- Long term planning & CTA decision

Early wins
18 months
Ongoing
36 months
Digital Twin

Demand Forecast → Network + Policy → Digital Twin Output

- Demand Forecast
- Traffic Management System
- SUMO Microsimulator
- Traffic on each Road Segment
 - Speed
 - Volume
 - Energy
The above graphs represent sample prediction across 3 different forecast horizons – using Recurrent Neural Network.

30 Minute (showing consecutively)

1 day

1 week (showing a single day)
Airport-NREL Collaboration Areas

<table>
<thead>
<tr>
<th>Technical Needs</th>
<th>Metrics</th>
<th>NREL’s Strategic Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site Resilience Planning / Microgrids</td>
<td>Cost savings, energy savings, emissions reductions, outage extension</td>
<td>REopt™ (Renewable Energy Optimization); URBANopt; RADE; CORE™ (Continuously Optimized Reliable Energy) Microgrid</td>
</tr>
<tr>
<td>Cyber / Physical Security</td>
<td>Physical to grid edge analysis, testing & validation</td>
<td>Energy Security and Resilience Center</td>
</tr>
<tr>
<td>Sustainable Transportation</td>
<td>Operational and financial implications of fossil fuel to electric conversion</td>
<td>Bus, vehicle, GSE electrification; infrastructure charging requirements; Fleet DNA clearinghouse</td>
</tr>
<tr>
<td>Building Efficiency, Net Zero Design, Grid Interactivity</td>
<td>Cost savings, energy savings, emissions reductions, resilience</td>
<td>OpenStudio, EnergyPlus, URBANopt</td>
</tr>
<tr>
<td>Aviation Biofuels</td>
<td>Energy density, emission reduction</td>
<td>Biofuel feed stock chemistries</td>
</tr>
<tr>
<td>Master Planning</td>
<td>Development scenario analysis</td>
<td>High Performance Computing (HPC) / Visualization Center</td>
</tr>
<tr>
<td>Systems Integration</td>
<td>Modeling and validating solutions, integration of transportation and broader energy infrastructure</td>
<td>HPC, system design, digital twins</td>
</tr>
</tbody>
</table>

➢ **Drivers:** Electrification, Automation, Economic, Resilience, Environmental

Current partnerships: Metropolitan Washington Airports Authority (DCA, IAD), Dallas-Fort Worth (DFW), Los Angeles World Airports (LAX)
Developing partnerships: New York-New Jersey (JFK, LGA, and EWR)
Identified Gaps in Research or Technical Solutions
Increasing Electric Dependency

- **Gap/Barrier:** Future electrified load growth for stationary and mobile energy loads are not well understood on a micro- or macro-scale.

- **Potential Opportunities:**
 - Tools to estimate, model, and validate load growth
 - Including existing electrical infrastructure constraints (feeder limitations)
 - Increases in loads for increased passengers, passenger amenities, plug loads
 - Research, analysis, and innovation at the energy-mobility nexus
 - Implications on energy use and demand
 - Charging infrastructure implications
 - Behavior and choice modeling coupled with economic analysis

Consolidated Utility Base Energy, or CUBE, was developed for the U.S. Army by NREL to use in forward operating bases. Photo by Dennis Schroeder
Microgrids for Survivability

• **Gap/Barrier:** As stationary and mobile energy loads increasingly become electrified, robust and resilient electricity infrastructure becomes more vital.

• **Potential Opportunities:**
 – Advanced strategies and analysis for microgrid planning and resilience
 • Renewable energy opportunities in the often-limited airport footprint
 – Re-evaluate FAA policies surrounding glint/glare with current technologies
 – Update best practices for siting photovoltaics and storage at airports
 – Macro-scale analysis of potential for renewable natural gas to support airports operations
 • Grid-interactive buildings
 • Analyze cyber-related vulnerabilities in the aviation sector (related to energy systems)
 – Develop best practices for cyber-secure airport microgrids
Planning for Resilience

• **Gap/Barrier:** A changing climate and associated extreme weather-related events have the potential to impact aviation operations and infrastructure; these impacts and potential mitigation measures are not well understood across the aviation industry.

• **Potential Opportunities:**
 – Develop best practices in resilience planning for the aviation industry, including resources risk assessments and financing mitigation solutions.
 – Identify broader community and stakeholder partnership opportunities for operational resilience.
 – Research cascading failures or impacts associated with climate impacts on airline operations and air traffic patterns
 – Assisting remote sites with improved efficiency and resilience
Financing of Innovative Projects

- **Gap/Barrier:** Limited appetite for third-party financing of innovative or emerging technologies and projects, including those for resilience; this risk is perceived too high or valuation methodologies are unclear.

- **Potential Opportunities:**
 - Identify best practices for third-party financing of innovative or emerging technologies and projects.
 - Aviation industry-focused technology demonstration programs which test innovative or emerging technologies in real-world applications with a wide dissemination of results.
 - Research in the valuation of resilience and in mechanisms to finance resilient technical solutions, for both buildings and transportation applications.
Robust Datasets

- **Gap/Barrier:** Lack of data and data transparency throughout aviation sector operations inhibits intermodal research and innovative solution development and identification.

- **Potential Opportunities:**
 - Data sharing agreements and widespread collaboration across all aviation operations and stakeholders
 - Airlines/Airport/FAA/TSA
 - Ground service providers
 - Taxi management and gate control
 - Independent/open data gathering with common interfaces/formats
 - Standardized performance metrics and reporting conventions
 - Better optimize facility and ground transportation systems

Source: https://www.fly.faa.gov/Products/Information/information.html
Partnering with Business for Competitive Advantage

In 2019 NREL had:

- 299 new partnership agreements
- $74.0M value of new partnership agreements
- 255 unique new partners
- 587 unique active partners

Nearly 900 active partnerships with industry, academia, and government
Thank you

Scott Cary, PE, LEED AP
Scott.cary@nrel.gov