flights within 3.4 miles (5.5 km) of an airport or above 300 ft (90 m). Another suspected drone collision in February caused $4,000 in damage to a Cessna 172 in British Columbia. In July 2016, a man was arrested for flying a drone 20 ft (6 m) below an airliner landing at John F. Kennedy Airport in New York. In September 2017, pilots on a Boeing 737 taking off from Chicago O’Hare International Airport spotted a drone at 9,000 ft (2.7 km). And in February 2018, a video came to light with a small drone flying above an airliner that was landing at McCarran International Airport in Las Vegas, Nevada; the UAS was at an altitude of around 1,500 ft (460 m). The US prohibits flights above 400 ft (120 m) or within 5 miles (8 km) of an airfield without permission.

Numerous studies had indicated that the impact of even a small drone — as well as distracting pilots during takeoff or landing and requiring evasive maneuvers during near misses — could result in fatal consequences.

Drone Threats to Rotorcraft

A Robinson R22 apparently hit something in flight in November 2015 over Santa Monica, California, shattering the windshield, in what may have been the first drone to hit a helicopter. But the first confirmed drone impact in the US was on Sept. 21, 2017, when a US Army UH-60M Black Hawk hit a DJI Phantom 4 quadcopter near Staten Island, New York. The drone was launched after sunset, and hit the Black Hawk 2.5 miles (4 km) away. At the time, there was even a temporary flight restriction (TFR) in place prohibiting all flights in Class B airspace.

On Feb. 9, a Blue Hawaiian Helicopter reported hit a drone while flying above Nā Pali Coast State Park; state officials noted that it is illegal for drones to fly at state parks.
On Feb. 14, a Robinson crashed on Daniel Island near Charleston, South Carolina, after reportedly swerving to miss a “white DJI Phantom quad-copter drone.” The Holy City Helicopters R22 was being flown by the student who was practicing low-altitude hovering, when the drone was spotted heading towards them. The instructor took over to conduct evasive maneuvers, but the tail rotor struck a tree and crashed. The two individuals were uninjured but the aircraft was totaled.

Near misses — where helicopter pilots have to conduct evasive maneuvers to avoid drones flying at them — are reported all too frequently. Notably, recent potentially fatal collisions with police helicopters have been narrowly avoided. These have included: in April 2017 at a building fire in College Park, Maryland; in June during a night flight near Charlotte, North Carolina; and in August in Boston, in restricted airspace and at well above 400 ft. A US Coast Guard MH-65 Dolphin helicopter from Air Station Port Angeles, Washington, reported a close call with a drone on March 17, 2018; the crew missed the drone by an estimated 50 ft (15 m). And on April 8, a drone came close to a Royal New Zealand Air Force SH-2G(I) Seasprite at 3,000 ft (900 m).

Help Promote Drone Safety
Various industry groups have recommended changing or adding regulations. While that might be part of the solution, there are multiple constituencies and perspectives. Geo-fencing and other technologies can also play a role, for instance, to keep aircraft away from airports, helicopters, etc. Manufacturers and retailers have been stepping up information and warnings and to consumers.

Through social media and other means, AHS has conducted outreach to help promote the Know Before You Fly initiatives and resources. You can help too! First of all, if you have a drone, be sure you register it and fly responsibly. Help other operators understand the potentially deadly risk to helicopters and other aircraft. Drones must be kept away from fires and other emergency operations. Help get the word out!

The AHS Unmanned VTOL Technical Committee has also been active, and recently made a call for additional unmanned technology professionals and drone enthusiasts to join the committee and help AHS tackle more of these pressing issues.

Our innovative interconnect products have robust electrical characteristics, greater flexibility and weight saving designs that elevate system performance and reliability. Our solutions are specified worldwide by aerospace engineers and avionics specialists for mission critical applications:

- High Speed Data
- Satellite Communications
- Cockpit Displays
- Navigation

ELEVATE SYSTEM PERFORMANCE AND RELIABILITY

Drone Safety Resources

FAA UAS webpage: www.faa.gov/uas
AHS resource page: www.vtol.org/drones
Mobile App: B4UFLY is a smartphone app for iOS and Android that helps drone operators determine whether there are any restrictions or requirements in effect at the location where they want to fly.