36th Annual VFS Student Design Competition

Extreme Altitude Mountain Rescue Vehicle

Sponsored by Airbus Helicopters

Alfred Gessow Rotorcraft Center
Department of Aerospace Engineering
University of Maryland
College Park, MD 20742 U.S.A.
The students listed above will receive credit for the course ENAE634: Helicopter Design.
To Vertical Flight Society:

The members of the University of Maryland Graduate Student Design Team hereby grant VFS full permission to distribute the enclosed Executive Summary and Final Proposal for the 36th Annual Design Competition as they see fit.

The UMD Graduate Design Team
Caladrius: Designed for Extreme Altitude Mountain Rescue

Efficient Blades
Aerodynamically optimized blades with deicing deliver maximum efficiency for both extreme altitude hover and high speed cruise.

Bearingless Hub
Low drag bearingless hub with a flap frequency of 1.06/rev provides agility during mountain rescue.

Tail Rotor
Large tail rotor designed for low power consumption and high wind speeds from any azimuth at extreme altitude.

Monocoque Tailboom
Sized to reduce weight and withstand extreme conditions.

Wide Field of View
Wide, bird strike resistant front windshield, bubble side window, and floor windows designed for maximum pilot field of view.

Search and Rescue Equipment
Equipment selected for effective operation for harsh weather conditions at Mount Everest.

Technical Specifications
- **GTOW**: 3500 kg
- **Rotor Radius**: 6.88 m
- **Installed Power**: 2894 kW
- **Disk Loading**: 24 kg/m²
Only one bird has conquered the iconic Mount Everest: the Himalayan bar-headed goose. It is no ordinary bird, as *Caladrius*, designed by the University of Maryland Graduate Design Team, is no ordinary helicopter. Like the bar-headed goose that has special hemoglobin to withstand hypoxia far beyond any human athlete, *Caladrius* has specially designed rotors, a capable flight control system, and powerful engines for extreme altitudes. The goose only has to cross the mountains, but *Caladrius* must battle the winds and the snow to pluck the bold and the brave from the jaws of inevitable death. It must also be swift, for every minute is precious for those fighting against the unforgiving elements on the Mount Everest.

Caladrius, named after a snow-white bird from Roman mythology with healing abilities, is a single main rotor helicopter designed for mountain rescue missions at unprecedented altitudes that no other rotorcraft can perform. *Caladrius* is not only a highly capable mountain rescue helicopter, it can also perform several other missions.

The design team interviewed a number of highly experienced pilots including Didier Delsalle from Airbus Helicopters, the only pilot to have ever landed a helicopter on the summit of Mount Everest, and Samuel Summermatter from Air Zermatt. The insights and sage recommendations provided by them helped focus the engineering efforts on designing a true "*Pilot's Helicopter*. Concept of operations, rotor hub and flight control system designs, avionics suite and search & rescue equipment selection, tail rotor, front windshield, side bubble window, and floor window designs were all influenced by the valuable inputs obtained from these pilots. *High safety* and *low pilot workload* emerged as the main design objectives.
Extreme Altitude Rescue Mission Profile

Leg 1
- Take-off from 1402 m (4600 ft) with 3 crew + 150 kg EMS equipment
- Climb to 3780 m (12400 ft)
- Level cruise for 135 km (73 NM)
- Land, refuel

Leg 2
- Take-off from 3780 m (12400 ft)
- Climb to 8870 m (29100 ft)
- Level cruise for 28 km (15 NM)
- Payload increase by 2 passengers
- Hover out of ground effect for 30 min
- Descent to 3780 m (12400 ft)
- Land, refuel

Leg 3
- Take-off from 3780 m (12400 ft)
- Descent to 1402 m (4600 ft)
- Level cruise for 135 km (73 NM)
- Land

<table>
<thead>
<tr>
<th>RFP Requirement</th>
<th>Caladrius Mission Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Time</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Max. Wind to Maintain Hover</td>
<td>40 knots</td>
</tr>
<tr>
<td>Heading at 8870 m (29100 ft)</td>
<td></td>
</tr>
<tr>
<td>Single Pilot Day/Night IFR Capability</td>
<td>-</td>
</tr>
</tbody>
</table>

U N I V E R S I T Y O F M A R Y L A N D
Understanding the details of rescue operations such as the crew composition and different hoisting methods was an important feature of *Caladrius’s* design. Having interviewed,

- Baltimore County Police Aviation Unit
- Maryland State Police Aviation Command
- John Tritschler (Director of Research at U.S. Naval Test Pilot School)
- Christian Polyka (USCG Pilot)
- Samuel Summermatter (Search and Rescue Pilot at Air Zermatt, Switzerland)
- Didier Delsalle (Experimental Test Pilot at Airbus Helicopters, Marignane, France)

the requirements for this mission were fully analyzed and insights and recommendations provided by these experienced sources were applied to the design. *Caladrius’s* crew composition is:

- Pilot
- Co-Pilot/Hoist Operator (Crew Chief)
- EMS Specialist

For safety on the ground and stability of the slung load, dynamic hoist operation (illustrated below) will be performed.
Vehicle Configuration

Configuration Space

Design Drivers

Further Down Selection

• Compact for access
• Superior cruise performance
• Low empty weight fraction
• Low vibrations in cruise
• High autorotation capability
• Low cost

Downselection

Side by Side
Single Main Rotor
Tandem

Further Down Selection

Single Main Rotor Configuration

• Compact for access
• Superior cruise performance
• Low empty weight fraction
• Low vibrations in cruise
• High autorotation capability
• Low cost
High Efficiency Blades

Caladrius’s blades are aerodynamically optimized for both extreme altitude hover and high speed cruise.

- Analyze Reynolds and Mach Numbers on the Rotor Disk
- Select Airfoils
- Generate Pareto Plot Using the Blade Designs
- Use Pareto Front for Refined Vehicle Sizing

Generate Airfoil Tables
In-House 2D RANS CFD
1260 CFD Cases

Analyze Rotor Performance
- Variation in taper, twist, and transition locations
- Hover: BEMT
- Cruise: Full vehicle trim
- Airfoil tables
- Non-linear aerodynamics

2500 blade designs

Final Blade Design

Hover Figure of Merit

FM = 0.83
L/D = 4.18

Inboard Twist: 10°/span
Inboard Taper: 1:1
Outboard Twist: -8°/span
Outboard Taper: 1.62

Airfoil Transition

Radius = 6.88 m
Tip Sweep = 15°
Tip Anhedral = 25°
Chord = 0.47 m
Chord = 0.29 m

VR7

SSC-A07
High Stall Margin and Low Vibrations

The rotor is **free of stall** while hovering in up to **22 knots updraft** at Mount Everest altitude.

Blade tip was designed with high-fidelity RANS for **high hover and cruise performance** and **low vibrations** to ensure EMS personnel can easily stabilize the condition of the rescuees.

No anhedral

Anhedral angle = 25°
Hub Design: Bearingless Hub for Low Drag and Robustness

- Flap frequency: 1.06/rev to find the balance between high control power and high gust tolerance
- Soft in-plane
- Clean, robust, low drag profile hub
- Low part count
- Protected from snow and debris

- -6° bilinear twist
- Bilinear taper
- Swept, anhedral, thin tip

Sized for high control loads due to special airfoils
Extreme Altitude Blade Design

Blade and flexbeam were designed to achieve the balance between control authority and gust tolerance both of which are crucial for extreme altitude mountain rescue operations. Electro-thermal deicing system ensures cold weather operation safety and performance.

The blade is resonance free at all rotor speeds.

Rotor speeds:
- Leg 1 → 282.0 rpm
- Leg 2 → 320.5 rpm
- Leg 3 → 297.7 rpm

Chosen for maximum efficiency

<table>
<thead>
<tr>
<th>Mode</th>
<th>Hover (/rev)</th>
<th>Cruise (/rev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Lag</td>
<td>0.72</td>
<td>0.79</td>
</tr>
<tr>
<td>1st Flap</td>
<td>1.06</td>
<td>1.07</td>
</tr>
<tr>
<td>2nd Flap</td>
<td>2.53</td>
<td>2.57</td>
</tr>
<tr>
<td>1st Torsion</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td>3rd Flap</td>
<td>4.21</td>
<td>4.33</td>
</tr>
<tr>
<td>2nd Lag</td>
<td>5.27</td>
<td>5.82</td>
</tr>
</tbody>
</table>
Rotors Free from Air and Ground Resonance

High thrust coefficient (C_T) at extreme altitude and possible snow landing presented challenges for aeroelastic stability and ground resonance. Caladrius’s blades are designed to be free from any such instabilities.

Air resonance damping

![Graph showing critical damping for lag vs advance ratio]

Ground resonance frequencies

![Graph showing rotor speed vs frequency with modes and resonance points]

Terrain Type	**Terrain Damping**	**Lead-Lag Damper**
Concrete | 0.05 | 0.02
Mud | 0.03 | 0.04
Grass | 0.03 | 0.04
Snow | 0.01 | 0.1

Elastomeric damper is selected for a possible snow landing which assures freedom from ground resonance for all terrain conditions.
Special Bearingless Tail Rotor

Caladrius’s 4-bladed tail rotor with twist prevents **loss of tail rotor effectiveness** and **vortex ring state** in winds up to **81 km/h (44 knots)** at 8870 m (29100 ft). The pedal control range was designed for high side winds.

Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>2.80 m (9.19 ft)</td>
</tr>
<tr>
<td>Chord</td>
<td>0.27 m (0.89 ft)</td>
</tr>
<tr>
<td>Solidity</td>
<td>0.239</td>
</tr>
<tr>
<td>Rotor Speed (Hover)</td>
<td>139 rad/s (1328 rpm)</td>
</tr>
<tr>
<td>Twist</td>
<td>-20° linear</td>
</tr>
<tr>
<td>Airfoil</td>
<td>RC510</td>
</tr>
</tbody>
</table>
Lightweight Gearbox Design with 50 minute Dry Running Capability

Weight minimized drive system

Reserved oil 50 min dry running

1: Engine Inputs
2: Tail Drive Shaft
3: 1st Stage Bevel Reduction
4: Accessory Outputs
5: 2nd Stage Planetary Reduction
6: Main Rotor Drive Shaft
Airframe Sized for Extreme Conditions

Airframe was sized with high fidelity finite element tools to satisfy CS 29 requirements.

Combinations of high tail rotor thrust and extreme side winds, updrafts, and downdrafts were considered for maximum load cases.

CS 29 requirements and high updrafts/downdrafts at Mount Everest were considered.
Minimizing power consumption during rescue is critical for the mission. Trade studies were performed among several configurations to examine the pros/cons of an electric tail rotor.

- **Lowest weight**: Twin turboshaft engines with mechanically powered tail rotor
- Tail rotor operates in the drag bucket for each wind case
- No power benefit with electric tail rotor (variable rotor speed)
- **Twin engines** for high safety

Power: 1447 kW (1940 hp) X 2
Weight: 190 kg (419 lb) X 2
SFC: 0.308 kg/kW/h (0.506 lb/hp-hr)
The flight control system satisfies IFR requirements.

Caladrius is equipped with a **Model Following Control System** and a triple redundant **four-axis autopilot** to ensure both **high gust tolerance** and **control authority.**

Feedback on and **Feedback off**

Response to 40 knots Side Gust Stabilized by Feedback

The flight control system **satisfies IFR requirements.**
Avionics: Selected for High Safety and Low Pilot Workload

- Weather Radar
- Day/Night IFR Compatibility
- Wireless Intercom System
- Triple Redundant Radar Altimeter
- Electro-Thermal Deicing System
State-of-the-art search and rescue equipment in order to reduce the pilot workload and increase mission effectiveness.

Recco avalanche detector to find the rescues trapped under snow

External searchlight with 25 million candlepower

Electro-optical system with thermal imaging capabilities with coverage of
- 150° elevation
- 360° azimuth
to expeditiously locate the rescues
Wide Field of View for High Mission Effectiveness

Bird strike resistant windshield, side bubble window, and bottom windows provide excellent field of view, which is especially important for the mountain rescue missions.

Bird strike analysis carried out using Altair

Bubble window geometry was designed after extensive aerodynamic studies for minimal impact in aircraft drag and increased lateral field of view

\[\Delta \text{drag} = 10\% \]

\[\Delta \text{drag} = 7.5\% \]

\[\Delta \text{drag} = 5.8\% \]

Design point for lowest airframe drag
Unprecedented HOGF Ceiling and Efficient Cruise

Only limited by transmission at low altitudes

Flow separation at upsweep was minimized

Elliptical cross-section crossbars

Flat plate area 1.2 m² (13 ft²)

Greater than 1600 kg payload at sea level

HOGF Ceiling:
9800 m (32150 ft)

Higher HOGF ceiling than any other helicopter by trading range and endurance

Design GTOW (kg)

HOGF Ceiling: 9800 m (32150 ft)

Rotor Stall Limit

ISA + 20°

ISA - 20°

ISA
Many Other Daring Missions

- **Firefighting**
 - External Payload: 1200 kg
 - 3 – 4 missions
 - Payload: 575 kg
 - Mission Radius: 120 km
 - Speed: 259 km/h

- **Arctic Monitoring and Rescue**
 - Mission Radius: 150 km
 - Endurance: 2.5 hrs

- **Severe Weather Disaster Relief**
 - Payload: 600 kg
 - Mission Radius: 120 km
 - Payload: 680 kg
 - Range: 230 km

- **High Altitude EMS**
 - Endurance: 2.5 hrs

- **High Altitude Surveillance**
 - Endurance: 2.5 hrs

- **Offshore Transport**
 - Payload: 680 kg
 - Range: 230 km