VFS Website
  • VIEW CART
  • CUSTOMER SUPPORT
  • MY STORE ACCOUNT
  • CONTACT US
  • STORE HOME
  • 5Prime
  • Forum Proceedings
  • Workshops
  • Technical Meetings
  • Vertiflite
  • Books, CDs & Gifts


Unable to log in or get member pricing? Having trouble changing your password?

Please review our Frequently Asked Questions for complete information on these and other common situations.
 

Vertical Flight Library & Store

CHECKOUT

0 Item(s) In Cart Total: $0.00


Computational Analysis and Flow Physics of a Ducted Rotor in Edgewise Flight

Matthew Misiorowski, Farhan Gandhi, Assad A. Oberai, Rensselaer Polytechnic Institute

May 8, 2017

  • Your Path :
  • Home
  • > Computational Analysis and Flow Physics of a Ducted Rotor in Edgewise Flight

Computational Analysis and Flow Physics of a Ducted Rotor in Edgewise Flight

  • Presented at Forum 73
  • 18 pages
  • SKU # : 73-2017-0196
  • Your Price : $30.00
  • Join or log in to receive the member price of $15.00!


VFS member?
Don't add this to your cart just yet!
Be sure to log in first to receive the member price of $15.00!

 
Add To Cart

Add to Wish List

Reward Value:
(60) Member Points

Computational Analysis and Flow Physics of a Ducted Rotor in Edgewise Flight

Authors / Details: Matthew Misiorowski, Farhan Gandhi, Assad A. Oberai, Rensselaer Polytechnic Institute

Abstract
This study examines the performance of the ducted rotor in hover and edgewise flight conditions. The flow over a three-dimensional model of a ducted rotor was simulated using the Spalart-Allmaras RANS model implemented in a stabilized finite element method. A sliding mesh was used to conveniently account for the large-scale motion associated with rotor revolutions. The simulation results were analyzed to understand the flow physics and quantify the contributions of the rotor and various sections of the duct interior surfaces on the total aerodynamic forces (thrust, drag and side force) and moments (pitching and rolling). In edgewise flight, freestream flow separates off the front of the duct inlet causing a region of recirculating flow and upwash in the rotor plane. The upwash region biases rotor thrust production to the front of the disk. The swirl velocity further biases the region of flow separation over the inlet and upwash at the front of the rotor towards the retreating side of the disk. The shift of thrust production on the rotor and duct towards the front produces a strong nose up pitching moment on the ducted rotor. The rear of the diffuser is a significant contributor to the total drag, this force as incudes a nose down pitch moment which partially negates the moment from the duct inlet. The rotor is the primary source of vertical vibratory forces as well as vibratory pitching and rolling moments. The small tip clearance of the rotor causes a local interaction between the blade tip and duct that is the dominant contributor to in-plane vibratory forces on the ducted rotor.

Recently Viewed Items

  • Computational Analysis and Flow Physics of a Ducted Rotor in Edgewise Flight

    Member Price :
    $15.00
    Your Price :
    $30.00

Popular Products

  • Master Card
  • Visa
  • American Express
  • Customer Support
  • Contact Us
  • Privacy and Security Policies
  • Refund Policies

Copyright © 2022 The Vertical Flight Society. All rights reserved.