VFS Website
  • VIEW CART
  • CUSTOMER SUPPORT
  • MY STORE ACCOUNT
  • CONTACT US
  • STORE HOME
  • 5Prime
  • Forum Proceedings
  • Workshops
  • Technical Meetings
  • Vertiflite
  • Books, CDs & Gifts


Unable to log in or get member pricing? Having trouble changing your password?

Please review our Frequently Asked Questions for complete information on these and other common situations.
 

Vertical Flight Library & Store

CHECKOUT

0 Item(s) In Cart Total: $0.00


Design of a Maneuvering Marine Hydrokinetic Cycloturbine

Margalit Goldschmidt, Michael Jonson, Joseph Horn, Richard Medvitz, Milo Feinberg

May 8, 2017

  • Your Path :
  • Home
  • > Design of a Maneuvering Marine Hydrokinetic Cycloturbine

Design of a Maneuvering Marine Hydrokinetic Cycloturbine

  • Presented at Forum 73
  • 11 pages
  • SKU # : 73-2017-0081
  • Your Price : $30.00
  • Join or log in to receive the member price of $15.00!


VFS member?
Don't add this to your cart just yet!
Be sure to log in first to receive the member price of $15.00!

 
Add To Cart

Add to Wish List

Reward Value:
(60) Member Points

Design of a Maneuvering Marine Hydrokinetic Cycloturbine

Authors / Details: Margalit Goldschmidt, Michael Jonson, Joseph Horn, Richard Medvitz, Milo Feinberg

Abstract
A Marine Hydrokinetic (MHK) cycloturbine is a renewable electric power generation system used in rivers or tidal environments. MHK cycloturbines have foils oriented perpendicular to the flow in a paddlewheel configuration, and use the lift from these foils to produce power. Due to the high cost associated with its operation and maintenance, it was desired to design an MHK system that can self-deploy, with propulsion and control mechanisms similar to a cyclorotor aircraft. This paper investigates different design configurations for such a vehicle, and analyzes the basic force and moment balance required. Computational Fluid Dynamics (CFD) was used to predict cycloturbine efficiency, during both power generation and maneuver. A six-DOF simulation model is being developed, where the turbine propulsive force model is matched to CFD analysis. A four turbine design with stacked counter-rotating turbines was determined to provide the best vehicle control and performance. Future experimental work includes investigation of a single small-scale crossflow turbine to validate the CFD and propulsive force model used in the six-DOF simulation.

Recently Viewed Items

  • Design of a Maneuvering Marine Hydrokinetic Cycloturbine

    Member Price :
    $15.00
    Your Price :
    $30.00

Popular Products

  • Master Card
  • Visa
  • American Express
  • Customer Support
  • Contact Us
  • Privacy and Security Policies
  • Refund Policies

Copyright © 2022 The Vertical Flight Society. All rights reserved.