VFS Website
  • VIEW CART
  • CUSTOMER SUPPORT
  • MY STORE ACCOUNT
  • CONTACT US
  • STORE HOME
  • 5Prime
  • Forum Proceedings
  • Workshops
  • Technical Meetings
  • Vertiflite
  • Books, CDs & Gifts


Unable to log in or get member pricing? Having trouble changing your password?

Please review our Frequently Asked Questions for complete information on these and other common situations.
 

Vertical Flight Library & Store

CHECKOUT

0 Item(s) In Cart Total: $0.00


Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

Zachary A. Cameron, NASA Glenn Research Center; Edward C. Smith, Penn State University; Hans DeSmidt, University of Tennessee; Robert C. Bill, Penn State University

  • Your Path :
  • Home
  • > Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

On Sale: Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

  • Presented at Forum 74
  • 13 pages
  • SKU # : 74-2018-1326
  • Your Price : $30.00
  • Join or log in to receive the member price of $5.00!


VFS member?
Don't add this to your cart just yet!
Be sure to log in first to receive the member price of $5.00!

 

Add to Wish List

Reward Value:
(60) Member Points

Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

Authors / Details: Zachary A. Cameron, NASA Glenn Research Center; Edward C. Smith, Penn State University; Hans DeSmidt, University of Tennessee; Robert C. Bill, Penn State University

Abstract
The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages. This could lead to lighter transmissions with fewer components, increased reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impact bearing loads. Specifically, the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances, and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Counterbalances negating the dynamic moment were shown to weigh between 30-50% of the pericyclic motion converter gears in a 40:1 reduction ratio pericyclic design at 12,000 rpm input speed and reduced applied moments by three orders of magnitude. Finally, a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances.

Popular Products

  • Master Card
  • Visa
  • American Express
  • Customer Support
  • Contact Us
  • Privacy and Security Policies
  • Refund Policies

Copyright © 2022 The Vertical Flight Society. All rights reserved.