VFS Website
  • VIEW CART
  • CUSTOMER SUPPORT
  • MY STORE ACCOUNT
  • CONTACT US
  • STORE HOME
  • 5Prime
  • Forum Proceedings
  • Workshops
  • Technical Meetings
  • Vertiflite
  • Books, CDs & Gifts


Unable to log in or get member pricing? Having trouble changing your password?

Please review our Frequently Asked Questions for complete information on these and other common situations.
 

Vertical Flight Library & Store

CHECKOUT

0 Item(s) In Cart Total: $0.00


Full-Scale Reynolds Number Experiment on Interactional Aerodynamics Between Two Model Rotor Hubs and a Horizontal Stabilizer

Leonard Metkowski, David Reich, Kyle Sinding, Nicholas Jaffa, Sven Schmitz, Pennsylvania State University

  • Your Path :
  • Home
  • > Full-Scale Reynolds Number Experiment on Interactional Aerodynamics Between Two Model Rotor Hubs and a Horizontal Stabilizer

Full-Scale Reynolds Number Experiment on Interactional Aerodynamics Between Two Model Rotor Hubs and a Horizontal Stabilizer

  • Presented at Forum 74
  • 11 pages
  • SKU # : 74-2018-0144
  • Your Price : $30.00
  • Join or log in to receive the member price of $15.00!


VFS member?
Don't add this to your cart just yet!
Be sure to log in first to receive the member price of $15.00!

 
Add To Cart

Add to Wish List

Reward Value:
(60) Member Points

Full-Scale Reynolds Number Experiment on Interactional Aerodynamics Between Two Model Rotor Hubs and a Horizontal Stabilizer

Authors / Details: Leonard Metkowski, David Reich, Kyle Sinding, Nicholas Jaffa, Sven Schmitz, Pennsylvania State University

Abstract
A full-scale Reynolds number water tunnel experiment was performed to generate a data set used to analyze the effects of helicopter rotor hub wake impingement on a canonical horizontal stabilizer. The experiment was designed and performed in the Pennsylvania State University Applied Research Laboratory Garfield Thomas Water Tunnel, where a 10.5 inch constant chord stabilizer was placed in the 48-inch diameter test section downstream of a 1/4 scale helicopter hub. Two rotor hubs were tested, a baseline configuration and a low-drag model. The stabilizer was mounted in the long-age wake. Lift, pitching moments, and unsteady pressures were measured on the horizontal stabilizer at a Reynolds number of 0.9 × 106, 1.8 × 106 and 2.7 × 106, corresponding to hub diameter-based Reynolds numbers of 2.2 × 106, 4.3 × 106, 6.5 × 106 and rotor advance ratios of 0.1, 0.2, and 0.3. The hub-wake interaction results were compared to a baseline airfoil test, which was performed without a hub upstream. Pressure sensors were used to evaluate wake unsteadiness impinging on the horizontal stabilizer. The horizontal stabilizer in clean flow exhibited lift and pitching moment in agreement with XFOIL predictions. With the low-drag hub upstream it measured lift fluctuations at a frequency of 2/rev, 4/rev, 8/rev and 12/rev. Downstream velocity and pressure fluctuations of 2/rev 4/rev and notably 6/rev were measured with the baseline hub upstream. Drag reduction on the low-drag hub was measured to be >25% compared to the baseline hub at full-scale Reynolds number. Both drag and wake harmonics measured at the hub and downstream on the stabilizer were found to be dependent on the upstream hub geometry. Pressure frequencies taken on the horizontal stabilizer yielded similar results and were consistent with those measured via the force balance.

Recently Viewed Items

  • Full-Scale Reynolds Number Experiment on Interactional Aerodynamics Between Two Model Rotor Hubs and a Horizontal Stabilizer

    Member Price :
    $15.00
    Your Price :
    $30.00

Popular Products

  • Master Card
  • Visa
  • American Express
  • Customer Support
  • Contact Us
  • Privacy and Security Policies
  • Refund Policies

Copyright © 2022 The Vertical Flight Society. All rights reserved.