Helicopter Drive Train Load Alleviation In Hover By Nonlinear Control
Mark Voskuijl, Barend-Jan van Bruchem, Marcel van Liempt, Delft University of Technology

Helicopter Drive Train Load Alleviation In Hover By Nonlinear Control
- Presented at Forum 74
- 12 pages
- SKU # : 74-2018-0107
- Your Price : $30.00
Join or log in to receive the member price of $15.00!
Helicopter Drive Train Load Alleviation In Hover By Nonlinear Control
Authors / Details: Mark Voskuijl, Barend-Jan van Bruchem, Marcel van Liempt, Delft University of TechnologyAbstract
A new simulation model to predict tail rotor drivetrain maneuver loads at hover is developed. The model consists of a high fidelity dynamic engine simulation coupled to a multibody dynamics simulation of the main rotor system, tail rotor and drivetrain, including torsional flexibility of drivetrain shafts. Simulations of yaw doublets at hover demonstrate that tail rotor drivetrain loads can be reduced without compromising handling qualities for moderate amplitude heading changes. A full autonomous heave/yaw hover control law is developed with a nonlinear element in the heading feedback loop. The nonlinear element specifies the aggressiveness level (gain) as a function of heading angle change. It allows the flight control system engineer to simultaneously minimize tail rotor drivetrain maneuver loads whilst maintaining level 1 handling qualities. The nonlinear flight control system is evaluated for the ADS-33 hover turn mission task element and compared to a conventional linear control system. Level 1 performance is achieved with both control systems and dynamic tail rotor drivetrain loads are reduced up to 58% by the nonlinear element.
Recently Viewed Items
-
Helicopter Drive Train Load Alleviation In Hover By Nonlinear Control
- Member Price :
- $15.00
- Your Price :
- $30.00