Unable to log in or get member pricing? Having trouble changing your password?

Please review our Frequently Asked Questions for complete information on these and other common situations.
 

Vertical Flight Library & Store

Multi-Physics Modeling and Optimization Towards a Digital Twin of Quenching Processes of Large-Scale Metallic Structures

Jim Lua, Kalyan Shrestha, Anand Karuppiah, Global Engineering and Materials Inc.
Jinhui Yan, University of Illinois
Joshua Piccoli, Nam D. Phan, Naval Air Warfare Center (PAX)

May 7, 2024

https://doi.org/10.4050/F-0080-2024-1399

Abstract:
Quenching is a heat treatment process for the rapid cooling of a metallic workpiece in water, oil, or air to obtain certain desired material properties. It is the most critical step in the sequence of heat-treating operations to preserve the solid solution formed at the solution heat-treating temperature by rapidly cooling to near room temperature. Because of the complex interaction between temperature, phase-transformation, and stress/strain relation that depends on the temperature distribution and the microstructure of the workpiece, there is no performance-informed quenching process that can be applied reliably to reduce the high scrap rate of airframe aluminum forging parts with a significant amount of residual stress and distortion. Since large aluminum forging parts are increasingly used in aerospace structures to enable structural unitization, it is important to construct a digital twin modeling approach to mirror the physical quenching process for minimizing scrap rate, increasing production efficiency, and engineers and machine operators' handling of variances in forging operations. A high-fidelity modeling of the coupling of thermal, metallurgical, and mechanical interactions is a key component to creating a digital twin of the physical quenching process. A high-fidelity thermal multi-phase computational fluid dynamics (CFD) model is applied to simulate fluid dynamics and temperature fields in the quenchant tank. The developed immersogeometric modeling approach is used next for an efficient model generation of a 3D workpiece with various dipping orientations. Given the temperature and pressure profiles predicted from the CFD-based heat transfer module, residual stress and distortion prediction modules are developed by including temperature and pressure fields mapping and temperature and strain rate dependent property evolution via Abaqus' user-defined subroutines. Verification and demonstration studies are performed using aluminum coupons dipped into a quenching tank with different orientations. Time histories of the temperature and residual stress fields were predicted to explore the relationship between the process and performance.


Multi-Physics Modeling and Optimization Towards a Digital Twin of Quenching Processes of Large-Scale Metallic Structures

  • Presented at Forum 80 - Best Paper for this session
  • 9 pages
  • SKU # : F-0080-2024-1399
  • Manufacturing Tech./ Product Support Joint

  • Your Price : $30.00
  • Join or log in to receive the member price of $15.00!


VFS member?
Don't add this to your cart just yet!
Be sure to log in first to receive the member price of $15.00!

 
Add To Cart

Reward Value:
(60) Member Points

Multi-Physics Modeling and Optimization Towards a Digital Twin of Quenching Processes of Large-Scale Metallic Structures

Authors / Details:
Jim Lua, Kalyan Shrestha, Anand Karuppiah, Global Engineering and Materials Inc.
Jinhui Yan, University of Illinois
Joshua Piccoli, Nam D. Phan, Naval Air Warfare Center (PAX)