VFS Website
  • VIEW CART
  • CUSTOMER SUPPORT
  • MY STORE ACCOUNT
  • CONTACT US
  • STORE HOME
  • 5Prime
  • Forum Proceedings
  • Workshops
  • Technical Meetings
  • Vertiflite
  • Books, CDs & Gifts


Unable to log in or get member pricing? Having trouble changing your password?

Please review our Frequently Asked Questions for complete information on these and other common situations.
 

Vertical Flight Library & Store

CHECKOUT

0 Item(s) In Cart Total: $0.00


Optimization of Circular Force Generator Placement for Rotorcraft Hub Force and Moment Cancellation

Keerti Prakash, George A. Lesieutre

May 8, 2017

  • Your Path :
  • Home
  • > Optimization of Circular Force Generator Placement for Rotorcraft Hub Force and Moment Cancellation

Optimization of Circular Force Generator Placement for Rotorcraft Hub Force and Moment Cancellation

  • Presented at Forum 73
  • 11 pages
  • SKU # : 73-2017-0193
  • Your Price : $30.00
  • Join or log in to receive the member price of $15.00!


VFS member?
Don't add this to your cart just yet!
Be sure to log in first to receive the member price of $15.00!

 
Add To Cart

Add to Wish List

Reward Value:
(60) Member Points

Optimization of Circular Force Generator Placement for Rotorcraft Hub Force and Moment Cancellation

Authors / Details: Keerti Prakash, George A. Lesieutre

Abstract
High-speed forward flight in helicopters causes high vibratory loads at the rotor hub, which are transmitted into the fuselage. This results in pilot fatigue and high maintenance requirements. Anti-vibration devices or vibration absorbers may be placed near the hub to reduce vibration transmission, while active vibration control systems may typically sense and reduce forces in specific areas of the fuselage. This paper focuses on developing strategies for optimal deployment (sizing, placement and control) of Circular Force Generators (CFGs) for vibration cancellation. Particle Swarm Optimization was used to carry out the optimization for two different load cases corresponding to different flight conditions. Converged solutions for CFG placement were obtained for: different individual load cases; multiple load cases; constrained and unconstrained actuator locations; and using different numbers of actuators. Two CFGs were found to be sufficient to cancel hub loads for a single load case. When two load cases are considered in multi-objective optimization, three actuators can substantially cancel the hub loads (to within 1%). And using four actuators can cancel the hub loads to within 0.1%. Finally, performance under actuator failure was considered as a way to distinguish among otherwise similarly-performing placement solutions.

Recently Viewed Items

  • Optimization of Circular Force Generator Placement for Rotorcraft Hub Force and Moment Cancellation

    Member Price :
    $15.00
    Your Price :
    $30.00

Popular Products

  • Master Card
  • Visa
  • American Express
  • Customer Support
  • Contact Us
  • Privacy and Security Policies
  • Refund Policies

Copyright © 2022 The Vertical Flight Society. All rights reserved.